
A MASSIVELY PARALLEL FRAMEWORK USING
P SYSTEMS AND GPUS

Jose M. Cecilia1 and Miguel A. Martı́nez-del-Amor2

1 Grupo de Arquitectura y Computación Paralela, Dpto. Ingenierı́a y Tecnologı́a de Computadores, Universidad de Murcia, Spain
2 Research Group on Natural Computing, Dpt. of Computer Science and Artificial Intelligence, University of Sevilla, Spain

Abstract
Since CUDA programing model appeared on the general purpose
computations, the developers can extract all the power contained in
the GPUs (Graphics Processing Unit) across many computational do-
mains. Among those domains, P systems or membrane systems pro-
vide a high level computational modeling framework that allows to
obtain polynomial time solutions to NP-complete problems by trad-
ing time for space, and also to model biological phenomena of com-
putational systems biology. P systems are massively parallel dis-
tributed and its computation can be divided in two levels of paral-
lelism: Membranes, that can be expressed as a blocked computation
and Objects, that can be expressed as a threaded computation. This
computational model naturally fits for CUDA programing model and
the GPU. We present a simulator for the class of recognizer P sys-
tems with active membranes by using the CUDA programing model
in order to exploit the massively parallel nature of those systems at
maximum. Experimental results are shown on a Tesla C1060 GPU
with a 60X of speed-up compared to the sequential code.

Motivation
• Towards an efficient implementation of a simulator for the class

of recognizer P systems with active membranes, based on the mas-
sively parallel nature that they have by their definition:

– P systems are an approach to obtain, in theory, polynomial time
solutions to NP-complete problems by trading time for space.

– P systems are an alternative to model biological phenomena in
the area of computational systems biology.

– Up to now, it has not been possible to have implementations nei-
ther in vivo nor in vitro of P systems.

– The manipulation and analysis of these devices is performed by
simulations on conventional computers.

• Looking for an alternative approach to extract parallelism on the
GPU by using P systems.

Union of two areas based on parallelism: Membrane Computing and
Graphics Processing Unit

Membrane Computing and P systems

•Membrane Computing is an emerging branch within Natural
Computing (Unconventional Computing).

• The main idea is to consider biochemical processes taking place
inside living cells from a computational point of view.

• The devices of this model are called P Systems.

• P systems are distributed parallel computing devices, processing
multisets of abstract objects by means of various types of rules.

• P systems consist of a set of syntactic components:

– A membrane structure: it is formed by a rooted tree of mem-
branes arranged hierarchically inside a root membrane called
skin, delimiting regions.

– Multiset of objects: corresponding to chemical substances
present in the compartments of a cell.

– Rules: corresponding to chemical reactions that can take place
inside the cell.

•A computation of a P system is a sequence of instantaneous tran-
sitions between configurations.

• The computation is driven by a global clock that synchronizes the
execution.

P systems with active membranes
The model of P system with active membranes is a construct of the
form:

Π = (O,H, µ, ω1, . . . , ωm, R)

•m ≥ 1 is the initial degree of the system.

•O is the alphabet of objects.

•H is a finite set of labels for membranes.

• µ is a membrane structure (a rooted tree), consisting of m mem-
branes injectively labelled with elements of H .

• ω1, . . . , ωm are strings over O, describing the multisets of objects
placed in the m regions of µ.

•R is a finite set of rules:

(a) Evolution rules: [a → v]αh where h ∈ H , α ∈ {+,−, 0}
(electrical charges), a ∈ O and v is a string over O.

(b) Send-in communication rules: a [ ]αh → [b]
β
h where

h ∈ H , α, β ∈ {+,−, 0}, a, b ∈ O.

(c) Send-out communication rules: [a]αh → [ ]
β
hb where

h ∈ H , α, β ∈ {+,−, 0}, a, b ∈ O.

(d) Dissolution rules: [a]αh → b where h ∈ H , α ∈
{+,−, 0}, a, b ∈ O.

(e) Division rules: [a]αh → [b]
β
h [c]

γ
h where h ∈ H ,α, β, γ ∈

{+,−, 0}, a, b, c ∈ O.

• The rules are used in a maximal parallel way: in one step, each object in a mem-
brane can only be used by at most one rule (non-deterministically chosen), but
any object which can evolve by a rule must do it.

• Rules (b) to (e) cannot be applied simultaneously in a membrane.

G. Păun: Membrane Computing, An introduction. Springer-Verlag, Berlı́n (2002).

Simulation of P systems
• The simulation is divided into two stages:

– Selection stage: the search for the rules to be executed in each
membrane.

– Execution stage: the execution of the rules previously selected.

•Global synchronization is needed between the stages, because the
membrane structure is modificated by the execution stage.

•We introduce the following priorities among rules in our simula-
tor to accelerate the simulation: dissolution, evolution, send-out,
send-in and division.

Data structures
• The simulator considers two levels of membrane hierarchy: the

skin and the rest of elementary membranes.

• Communication among membranes is only presented between the
skin and the elementary membranes.

Design of the simulator in CUDA

• Each CUDA thread block represents a membrane.

• Each thread represents at least one object per membrane.

– If there are more objects than allowed threads per block (512 in
CUDA programing model), they are equally distributed.

• The best performance is reached using 256-threads per thread
block.

• The selection stage is implemented as a CUDA kernel, which in-
cludes part of the execution stage:

– Each individual thread is responsible for identifying if there are
some rules associated with the object(s) that it represents.

– The rules are selected respecting the priorities defined before.

– All the evolution rules previously selected are stored.

– For the other rules, each thread block only stores one of them.

– Finally, the threads executes the evolution rules related to them,
after synchronization requirements: they only entails block-level
synchronization.

• The rest of the execution stage is implemented as different CUDA
kernels, one kernel per each kind of rule.

– Dissolution and division kernels use as much thread blocks as
membranes.

– Send-in and send-out kernels only use a thread per membrane.

• The kernels are executed depending on the selected rules.

• The rules that entail communication with the skin membrane
(send-in, send-out and dissolution) are implemented by using
atomic instructions on the device memory.

Conclusions and future work
•Using the power that provides GPUs to simulate P systems with

active membranes is a new concept in the development of applica-
tions for membrane computing.

• P systems are an alternative approach to extract all performance
available on GPUs due to its parallel nature.

• This simulator is limited by the available resources on the GPU as
well as the CPU.

– In the following versions, we will reduce the memory require-
ments to handle bigger instances of NP-complete problems.

•Our aim is to fully simulate P systems with active membranes:

– To include several levels in the membrane struture.

– To implement not elementary division in the simulator.

• In forthcoming versions, we will adapt our simulator to simulate
specific problems at maximum performance.

•We will develop simulators for other kind of P systems, such as
probabilistic P system model or stochastic P system model, which
are useful to attack within the framework of computational sys-
tems biology.

• The newest clusters of GPUs provide a higher massively parallel
environment, so we will attempt to scale to those systems to obtain
better performance in our simulated codes and also more memory
space for our simulations.


