

MeCoSim
Membrane Computing Simulator - User Manual

23/01/2012
Research Group on Natural Computing
Luis Valencia Cabrera
lvalencia@us.es

mailto:lvalencia@us.es

Contents

1. Getting Started .. 2

2. General MeCoSim Window ... 3

3. Run application.. 5

4. Load config file .. 1

5. Export app ... 4

6. Simulation ... 5

7. Plugins Development .. 6

1. Getting Started

Follow these simple steps to start using MeCoSim (Membrane Computing Simulator):

 Visit MeCoSim page: http://www.p-lingua.org/mecosim/docsite/

 Download the latest version of MeCoSim.

 Unzip the file.

o Now you have a MeCoSim folder, including all the needed files.

o You are now ready to run MeCoSim by launching the file Run_MeCoSim.bat.

Additional info (present in MeCoSim downloads web page):

 MeCoSim zip file includes, among others, the following files inside MeCoSim folder:
o Run_MeCoSim.bat: MeCoSim execution file.
o lib/MeCoSim2.0Core.jar: is the core of MeCoSim application.
o lib/pLinguaCore.jar: includes a recent version of pLinguaCore (including

different variants of cell like, multienvironment, tissue like and SN P systems).
Can be replaced for your own newer or custom version.

o prop/config-properties: properties file to change some execution parameters
for running MeCoSim (max dedicated memory in MB, main params).

o prop/ecosim-properties: some setup parameters used by MeCoSim.
o plugins: folder where we can include our own plugin jar files to be loaded for

MeCoSim.
o prop/plugins-properties: properties file to indicate to MeCoSim which method

of which class it must call to run a specific plugin.
o userfiles: folder where the user can include his/her own files to use in

MeCoSim (.xls/.ods spreadsheet config file, .pli P-Lingua model files, .ec2
scenario data files, etc).

http://www.p-lingua.org/mecosim/docsite/
http://www.p-lingua.org/mecosim/docsite/files/MeCoSimRelease-20120121-1231.zip

2. General MeCoSim Window

When you enter MeCoSim, a general graphical interface is showed:

This interface includes a list with the custom applications that we have previously loaded.

The list includes the following information:

 App id: an ID that the users have to set in their applications to identify it uniquely.

 App name: the desired name of the application (it is advisable to provide unique

names, but not mandatory).

 P-Lingua file path: path to the .pli file containing the current P-Lingua model.

 Data file path: path to the .ec2 file containing the input data of the current scenario.

 Sims: number of simulations (it makes sense when we want to perform several

simulations to get averages, deviations, etc. over the data across the different

simulations).

 Cycles: number of cycles to simulate (it makes sense when we have models following

some cyclic process repeating a sequence of steps each cycle, without a halting

condition; otherwise we state 0 as the number of cycles, running the simulation until

we reach a halting configuration).

 Steps: is the number of steps by cycle, making sense when we have a non-zero number

of cycles.

By default, we provide a general application with id 1, called “General”, pre-configured for a

very simple example of a custom MeCoSim app. We explain this later.

Below the list, there are some buttons whose functionality is explained in specific sections of

the manual, but here you have a brief description:

 “Run application”: runs the selected custom application, showing the main window of

the custom application as it was configured.

 “Load config file”: creates a new custom application by loading a configuration file, or

modify an existing one by reloading (total or partially) the configuration file.

 “Delete app”: deletes the selected custom application, deleting all its related

information for MeCoSim.

 “Export custom app”: generates a self-contained custom app from the info contained

in MeCoSim, providing a zip file with all the specific information and files, ready to use

by running the application for a P systems designer or an end-user.

All the functionality provided by these buttons is also available from the “Application” menu.

Below the buttons we see a text area where the standard output is redirected, showing the

user information about the actions performed and possible running errors (if you detect some

errors, or you have suggestions, questions or comments, please notify to lvalencia@us.es).

mailto:lvalencia@us.es

3. Run application

Whenever we run a custom MeCoSim application (via button, menu item or a previously

exported app), a “MeCoSim – Custom app” window is showed, similar to this:

The title of the window corresponds to the name set in the configuration file that we loaded in

MeCoSim. In the menu bar, we see some menus:

 Scenario:

o New: enable the addition of a

new scenario.

o Open: open a file with the data

of a previously saved scenario.

o Save: save the data of the

current scenario.

o Save As: save the current data

with a different name.

o Reset: reset the behavior of the

app to the default state.

o Exit: exit the MeCoSim custom

app (without exiting from the

main window of MeCoSim).

By default, when we load a config file for a new application or open the “General” example,

the path to the file is not set or is invalid. We must select our scenario file clicking at “Open”.

Then we select the desired .ec2 scenario data file.

Now we can see how the path to the scenario data file (.ec2) is properly set:

 Edit:

As we can see, this menu provides

the basic functionality to Cut, Copy,

Paste, Delete and Select All.

 Model (available in designer mode):

o Set Model: permit the selection

of a P-Lingua model file (.pli).

o Set number of steps by cycle: in

cyclic models, set the number of

steps that form a cycle.

In the present example, if we choose the P-Lingua model file (.pli), we can see that the path is

properly set:

 Simulation:

o Simulate!: runs the simulation

of the model set in the P-Lingua

file. If the model needs some

parameters not assigned in the

.pli file, it has to be possible to

generate them from the input

data provided by the user as

part of the current scenario.

o Options: permit selecting the

number of cycles to simulate

(for cyclic models; zero

otherwise, running each

simulation until a halting

configuration is reached). We

can also select a specific

algorithm from a list of available

algorithms, depending on the

loaded model (e. g., active

membranes for the present

case, or dndp4 or bddcb chosen

for a probabilistic model, from

the showed list).

o Debug (available in designer

mode): some options to init

model, run step by step (Step),

or reset, as we will see when

describing the Debug console.

 Plugins: permit running plugins

that included in MeCoSim. We

provide a way to include some new

features in MeCoSim by means of

external plugins, integrated with

the core of MeCoSim by filling

some lines in the plugin-properties

file, as we further describe in

section 7: plugins development.

4. Load config file

The previous sections are based on a custom application, previously configured and loaded in

MeCoSim. If we want to set up a new application, we must fill a spreadsheet file with the

desired inputs and outputs. In what follows, we describe the various tabs of the spreadsheet to

populate.

 General information:

We set a unique app Id number, the application name, the default paths to scenario and model

files, simulation cycles, number of simulations, steps by cycle and mode (Designer or End-

user). This information has been described yet.

 Tabs hierarchy:

This feature enables the user to set the tabs hierarchy to be showed in the main window of the

custom app. The first row with Tab parent id = 0 plays the role of the application, so the

remaining rows should refer to 1 if we want to have these tabs at the first level (that is to say,

its parent tab is the app), or any other number greater than zero (if zero, they are not

showed), implying that they are children tabs of the referred tab parent id. In this example, we

have only one tab (Output) at the first level, containing another tab (Simulation). In addition, if

we are in “Designer” mode, a “Debug console” tab is also included at the first level. Thus, the

custom application will present this hierarchy:

 Tables config:

Here we list the tables to include in the leaf tabs of the previous hierarchy (each table in the

specified tab id), indicating the type of the table (Input or Output), the number of columns, the

initial number of rows (it usually changes for output tables after simulating). We also have to

tell if the table should be saved as part of the scenario data file (.ec2).

Along with this information, more specific information about each table is needed. This is done

by means of a specific tab in the spreadsheet files for each table. For example, for “Simulation”

table we must have a tab called “TC_Simulation” (TC means table config).

As you can see, this information provides an id, name, tooltip text, a default value and an

indicator to enable/disable the edition of each particular column.

 Simulation params:

When a P systems designer models a problem, usually tries to solve an abstract problem, a

family of problems, not a single scenario. For that reason, P-Lingua permits defining a model

with some variable information, in the form of parameters. These parameters could be written

in the model file, but is more interesting to provide a way to permit the users introducing the

relevant information about different scenarios without changing the model file.

Then we need a way to transform the input data provided by the user in parameters for P-

Lingua to populate the initial configuration and rules of the instantiated P system.

The designer can introduce in the spreadsheet file the name of a parameter, optionally with a

number of indexes between 1 and 4, joint with the value of the parameter. This value is

expressed in a language that permits the use of usual numbers, mathematical operators, input

tables’ data access, previously set parameters and some predefined functions. As an example,

we include the parameter g, with value 1. Examples of the use of other important ingredients

are:

 Param x with value <1,2,4>: access to the data of the table with id 1, specifically to row

2, column 4.

 Param p with value 1-<@ncdf,T{1,2},0.5,IT{1}>, with index1 equals to [1..20] and

index2 equals to [1..18]: returns parameters from p{1,1} to p{20,18}, each of them

calculated like 1 minus the value of the normal distribution cumulative distribution

function with parameters mu = T{1,2}, sigma = 0,5 and x = IT{1}. T{1,2} refers

to a previously calculated parameter T, replacing for each parameter N for the

current value of the iterator with index N.

We are working in a detailed manual with the description of the language accepted for the

mechanism for generate these parameters for P-Lingua.

In addition, an extensible mechanism to provide specific functions is provided. These functions

should be coded in your own jar files (added to the plugins folder), implementing the

IAlgorithm interface and adding the function to ecosim-properties file. For example, we have

by the default in the file, among other functions:

func-floor = algorithms.Floor
func-ceil = algorithms.Ceil
func-min = algorithms.Min
func-eq = algorithms.Equal
func-if = algorithms.If
func-abs = algorithms.Abs
func-g = algorithms.Greater
func-log = algorithms.Log
func-exp = algorithms.Exp

We are also working in incorporating a visual way to add functions written in Haskell inside
MeCoSim, since it is a purely-functional language and we have defining mathematical
functions.

 Simulation results:

Once the simulation have run and finished, some result should be showed to the user, but the

type of result may be different in function of the problem, so we must indicate which result we

want. MeCoSim permits defining output tables to show the desired processed results, possibly

visualizing the output in a graphical way (if indicated in the column Graphic output in the

tablesConfig tab of the spreadsheet). To define each result, we have to provide an Id, a name,

the id of the output table to show this result (0 if we are defining an auxiliary table), and a

referred table id (if the row corresponds to a result that depends on a previously defined

auxiliary table). In addition to this tab, we have to fill a specific tab for each result. For

example, for the Simulation result we have the “SD_Simulation” tab:

Here we set the fields to show in the output table (Select rows), some criteria to filter in

function of different conditions (Where rows), and possibly some grouping criteria (Group

rows). These types of criteria derive from the theory of databases, as it provides a very general

and flexible way to filter and processing data. The configured results are translated internally

to SQL language to launch a query on the embedded database (HSQLDB on memory DB) that

contains the result of the computation. One advantage of this approach is that we can use

almost all the formula provided by the HSQLDB database(all of them including two or less

input arguments).

http://hsqldb.org/doc/2.0/guide/builtinfunctions-chapt.html

We are working in a detailed manual of the functionality of the language to define rich results,

but we include some example here to illustrate some possible ingredients.

For any doubts, questions or comments, please feel free to contact with us in the e-mail

lvalencia@us.es.

5. Export app

MeCoSim includes a way to export a single custom application for P systems designers or end

users, deleting information about other applications, and abstracting them the non-relevant

information depending on the type of user (Designer or End-User).

The export dialog enables the choice of the user type, along with the selection of the desired

plugins to add to each custom application, from the available set of plugins present in the

database. If we click the button, a confirmation message is presented:

mailto:lvalencia@us.es

If confirmed, a zip file is generated with the self-contained custom application, including all the

needed files and folders. After that, an information message is showed:

6. Simulation

Once we have set the model and the input data needed for our specific scenario, we run the

simulation by pressing the menu item “Simulate!” (or pressing Ctrl+L):

Then the simulation is performed, until a halting configuration is reached (if the number of

cycles is set to 0) or a number of cycles (if they are set to more than zero, being each of them

composed of the set number of steps by cycle). If a number of simulations greater than 1 is set,

then the process is repeated the fixed number of simulations.

After the set of simulations has finished, MeCoSim shows the user the required output tables

and graphics, as configured in the spreadsheet file (as described in section 4 – Load config file).

7. Plugins Development

In order to easily extend the functionality provided for MeCoSim and integrate it with other

several applications, existent or to be developed, in a decoupled way in the sense of

independent programs and developments, we have provided a simple mechanism to add

external independent programs in the form of jar files to MeCoSim. By default, we provide two

plugins to serve as examples:

 Edit P-Lingua file: opens the selected P-Lingua file in a very basic editor:

 Haskell Interpreter: an experimental Java interface to “compile and run” Haskell code

from MeCoSim, showing the standard Haskell output in a textarea (you need to have

ghc interpreter installed).

http://www.haskell.org/ghc/

These plugins are under development and will be improved as soon as possible.

If you want to add your own Java plugins to MeCoSim, supposed that you have the application

developed independently as a jar file (or a folder containing a main jar file), the process is as

follows:

1. Include the jar file or complete folder in the plugins folder of MeCoSim.

2. Write some few lines in plugins-properties file (we illustrate with an example):

a. plugin-texteditor = alvarotreeapp.trail

b. pluginname-texteditor = Edit P-lingua file

c. pluginmethod-texteditor = openPLinguaFile

d. pluginjar-texteditor-1 = TreeTestPlugin.jar

In this example, we name a plugin “texteditor”, implemented in the static method

“openPlinguaFile” of the qualified class “alvarotreeapp.trail” (inside the jar file

“TreeTestPlugin.jar”), visible in MeCoSim through the menu option “Edit P-Lingua file”.

If you need some input parameters to your program, you can set them with an

additional line for each needed input parameter (e. g. pluginparam-texteditor-1 = va).

